Leading Christian Resource for Avid Readers, Support New Schools with Every Purchase.

Methods for Teaching Science As Inquiry

Paperback |English |0131180053 | 9780131180055

Methods for Teaching Science As Inquiry

Paperback |English |0131180053 | 9780131180055
Overview
PrefaceTHE EIGHTH EDITION of Method for Teaching Science as Inquiry introduces prospective and experienced teachers to the science content, teaching strategies, and inquiry activities necessary to teach science in contemporary ways. In addition, the infusion of the National Science Education Standard in this edition will provide all readers a useful framework for making instructional decisions.Although several approaches to teaching and learning science are described in this text, the main focus is on inquiry. Inquiry is both a way to teach and a way for students to investigate the world. Doing inquiry means asking simple but thoughtful questions about the world and engaging students to answer them. Inquiry incorporates the use of hands-on and process-oriented activities for the benefit of knowledge construction. Inquiry encourages students to connect their prior knowledge to observations and to use their observations as evidence to increase personal scientific knowledge. In this instructional environment, teachers act as facilitators of learning rather than "bankers" who have stored knowledge that they transfer into students' heads. New to the Eighth EditionThose of you familiar with the text will notice that it has a new title. Each preceding edition was entitled Teaching Modern Science and walked readers through the process of guiding students toward the discovery of science knowledge. Guided discovery is a more programmed way of teaching science using teacher-directed questioning. However, recent advances in cognitive learning theory have lead to national reform in education. From cognitive learning research, educators realize the need for students to be actively engaged in their own construction of knowledge, but teachers must be prepared to "invent" concepts and principles for students to use. Inquiry learning and inquiry teaching go together. Thus, the revision of this text provides the knowledge and skills necessary to teach from an inquiry-oriented perspective.Methods for Teaching Science as Inquiry mirrors national reform in another way as well. Educational reform has led to the development of common instructional goals for every content area of education throughout the nation. Prodigious efforts of the American Association for the Advancement of Science (AAAS), the National Research Council, and other groups in the 1990s have provided a coherent vision and research-based framework for a new era of science education. As a result, the National Science Education Standards (NSES) were created to coordinate the goals and objectives for science instruction. The National Science Education Standards provide directives not only for the setting up of district-wide science programs but also for the science concepts that are to be covered at each grade level. These standards are not rigid but rather provide you, and the school system in which you teach, concrete guidelines for exposing students to science experiences throughout their schooling. Different from the hit-or-miss approach of the past, the science goals and objectives for elementary and middle schools are clear. Throughout this text, you will have an opportunity to become familiar with the National Science Education Standards as the text is woven around them. Look for citations to the National Research Council and the symbol NSES passages within the text and in margin notes to find your responsibilities for using them in all aspects of science teaching and learning.Other significant changes within this edition include:A new chapter, Processes of Science and Scientific Inquiry, describes how to use the processes of science within the context of scientific inquiry. More science activities and science lessons integrated into chapters act as exemplary models describing how to plan for instruction within the context of inquiry. Practical suggestions for building learning communities are included throughout the text and describe cooperative grouping strategies and ideas for encouraging the exchange of ideas among students during inquiry experiences. Connections between science, math, social studies, and language arts are explained extensively with new and exciting concrete ideas and strategies in Chapter 8. Threaded throughout the text are references to the use of the Companion Website and URLs that identify how to utilize technology and the Internet in science teaching. Chapter 10 groups together strategies for the use of advanced technology. Instructional models for continuing professional development are illustrated in Video Case Studies. Nine elementary and middle school teachers reflect on their growth as science teachers as they teach their own classes, work. with science mentors, and explore how they could teach science better. A different Video Case Study is featured in each chapter of the text. The Video Case StudiesBecause the Video Case Studies in this text are a unique feature, it is important to explain not only the predictable format for the use of these videos but also how to get the most out of using those case studies to advance your own learning.The Value of Video Case Studies. In their practical guide Designing Professional Development for Teachers of Science and Mathematics, Susan Loucks-Horsley, Peter Hewson, Nancy Love, and Katherine Stiles (1998) identified the case study method as one of the most important strategies for professional development. The process of observing and reflecting on teachers' actions, and on students' learning and thinking, can lead to changes in the knowledge, beliefs, attitudes, and ultimately the practice of pre-service and in-service teachers. You and your colleagues can use classroom discussions about the Video Case Studies to:extend and apply knowledge presented in the chapters, formulate questions and ideas, learn from one another, become aware of alternative perspectives and strategies, reflect on real problems faced by practicing teachers, and increase your science knowledge, as more than 30 science topics are taught in the case studies.Videos by Annenberg. The Video Case Studies that accompany this text are free to professors who use this text and are part of the professional library developed by Annenberg. Chosen for their value in illustrating professional development, ten video cases depict nine different teachers in three videos from Annenberg's Case Studies in Science Education series. Each video case has three modules: An Introduction to the Case, Trying New Ideas, and Reflecting and Building on Change. The three parts of each video case enable you to look in on a teacher and his or her students at intervals throughout the school year. From one segment to the next, in each case you will see how the teacher undergoes professional changes in approaching science teaching. The changes reflect the real-life experiences of teachers who see a need to improve the way they teach, meet with a teaching mentor to gather ideas, and implement ways to improve their science teaching practice. As a result of this work, you will witness not only a teacher's growing confidence and capability in science teaching but also a growing involvement of students in their own science learning.Chapter Video Guides. A video guide is found in each chapter. Within each two-page or four-page guide are Questions for Reflection to help you and others increase your involvement with the Video Case Study and look for changes in the knowledge, beliefs, and instructional plans and approaches of the featured teacher. Included in most of the chapter video guides are examples of strategies you may want to implement in your own science teaching practice.For optimum benefit while watching the video segments, participants must have a "shared commitment to improving their teaching practice, a willingness to share and critically discuss aspects of practice and curiosity about important assumptions that underlie teaching and learning" (Loucks-Horsley et al., 1998, pp. 108-109). A knowledgeable and experienced facilitator can enhance the case discussions. The role of the facilitator is to help participantsunderstand the situation and issues in the case, focus on the thinking of students in the video classrooms, examine the approach taken by the teacher, reflect on the theoretical foundation for the teacher's actions, and consider alternative actions and their consequences (Loucks-Horsley et al., 1998).Although these Video Case Studies are not intended to replace actual classroom visits, they can provide a more focused picture of specific aspects of teaching and learning than might be obtained from real-time observations of classes. The Companion WebsiteA Companion Website designed for student and professor use accompanies this text. The Syllabus Manager allows professors the opportunity to place the class syllabus online. This enables students to also see a course calendar, chapter assignments, and course changes as they are posted. In addition, content information is organized as chapter-by-chapter features and provides you with study guide questions and self-assessment tests so you can check your own understanding of teaching science in an ongoing way. Links on the website navigation bar can transport you tofocus questions you can use as a study guide, online quizzes that are self-pacing and self-evaluating, with scores e-mailed to professors if desired, Web destinations and links to wonderful science resources on the Internet, and a Message Board where you can engage in meaningful discourse about science teaching and learning issues with others taking the course.Unique to this Companion Website are virtual classroom experiences linked to Chapters 2, 3, 4, and 8, set up as video essays. They provide an opportunity for you to see how well you understand the components of good science teaching. Videostreaming on the video essays illustrates the various teaching strategies of classroom teachers teaching properties of air in grade 1, balance beams in grade 4, and pendulums in grade 8. As you begin to understand the components of good science instruction you can visit the video essays on the Companion Website and test yourself on which strategies exemplify effective science teaching. You should also see opportunities for improving each science lesson. As you become more familiar with the rudiments of effective science instruction, you may choose to revisit these virtual sites and reassess your understanding of science teaching and learning.Margin notes integrated in the text and designated with a logo that will prompt you to visit the Companion Website to utilize its features in your course study. AcknowledgmentsTo be meaningful, educational visions have to be practically implemented in teacher education and staff development programs, and most important, in our nation's classrooms. Our goal in writing and revising this textbook has been to present the new vision of science education and provide you with specific help, guidelines, and examples as you prepare to teach science in a new millennium.The reviewers for the seventh edition of this text, as well as those who read and commented on the chapters in the eighth edition, have been very perceptive and insightful and have offered many comments and suggestions that, hopefully, have led to significant improvements. We acknowledge and express our gratitude to the following reviewers: Carol Brewer, The University of Montana; Rosemarie Kolstad, East Texas State University; Mark R. Malone, The University of Colorado; Richard H. Moyer, The University of Michigan-Dearborn; Michael Odell, The University of Idaho; William A. Rieck, The University of Southwestern Louisiana; Joseph D. Sharpe, Tennessee Technological University; Leone E. Snyder, Northwestern College; M. Dale Streigle, Iowa State University; and Dana L. Zeidler, The University of South Florida-Tampa.We thank editor Linda Ashe Montgomery at Merrill Education who has provided substantive, as well as editorial, assistance throughout the writing and revision efforts. She has a great sensitivity to education issues, not only in science but in other specialized fields as well. We wish to acknowledge her contributions to this text and convey our appreciation to her.We also wish to thank Kathy Deselle, copyeditor; Kate Nichols, designer; Mary Harlan, production editor; and Betsy Keefer, project coordinator.--This text refers to an out of print or unavailable edition of this title.
ISBN: 0131180053
ISBN13: 9780131180055
Author: Arthur A. Carin, Joel E. Bass, Terry L. Contant
Publisher: Pearson College Div
Format: Paperback
PublicationDate: 2004-02-01
Language: English
Edition: 9
PageCount: 400
Dimensions: 8.0 x 0.75 x 10.0 inches
Weight: 26.08 ounces
PrefaceTHE EIGHTH EDITION of Method for Teaching Science as Inquiry introduces prospective and experienced teachers to the science content, teaching strategies, and inquiry activities necessary to teach science in contemporary ways. In addition, the infusion of the National Science Education Standard in this edition will provide all readers a useful framework for making instructional decisions.Although several approaches to teaching and learning science are described in this text, the main focus is on inquiry. Inquiry is both a way to teach and a way for students to investigate the world. Doing inquiry means asking simple but thoughtful questions about the world and engaging students to answer them. Inquiry incorporates the use of hands-on and process-oriented activities for the benefit of knowledge construction. Inquiry encourages students to connect their prior knowledge to observations and to use their observations as evidence to increase personal scientific knowledge. In this instructional environment, teachers act as facilitators of learning rather than "bankers" who have stored knowledge that they transfer into students' heads. New to the Eighth EditionThose of you familiar with the text will notice that it has a new title. Each preceding edition was entitled Teaching Modern Science and walked readers through the process of guiding students toward the discovery of science knowledge. Guided discovery is a more programmed way of teaching science using teacher-directed questioning. However, recent advances in cognitive learning theory have lead to national reform in education. From cognitive learning research, educators realize the need for students to be actively engaged in their own construction of knowledge, but teachers must be prepared to "invent" concepts and principles for students to use. Inquiry learning and inquiry teaching go together. Thus, the revision of this text provides the knowledge and skills necessary to teach from an inquiry-oriented perspective.Methods for Teaching Science as Inquiry mirrors national reform in another way as well. Educational reform has led to the development of common instructional goals for every content area of education throughout the nation. Prodigious efforts of the American Association for the Advancement of Science (AAAS), the National Research Council, and other groups in the 1990s have provided a coherent vision and research-based framework for a new era of science education. As a result, the National Science Education Standards (NSES) were created to coordinate the goals and objectives for science instruction. The National Science Education Standards provide directives not only for the setting up of district-wide science programs but also for the science concepts that are to be covered at each grade level. These standards are not rigid but rather provide you, and the school system in which you teach, concrete guidelines for exposing students to science experiences throughout their schooling. Different from the hit-or-miss approach of the past, the science goals and objectives for elementary and middle schools are clear. Throughout this text, you will have an opportunity to become familiar with the National Science Education Standards as the text is woven around them. Look for citations to the National Research Council and the symbol NSES passages within the text and in margin notes to find your responsibilities for using them in all aspects of science teaching and learning.Other significant changes within this edition include:A new chapter, Processes of Science and Scientific Inquiry, describes how to use the processes of science within the context of scientific inquiry. More science activities and science lessons integrated into chapters act as exemplary models describing how to plan for instruction within the context of inquiry. Practical suggestions for building learning communities are included throughout the text and describe cooperative grouping strategies and ideas for encouraging the exchange of ideas among students during inquiry experiences. Connections between science, math, social studies, and language arts are explained extensively with new and exciting concrete ideas and strategies in Chapter 8. Threaded throughout the text are references to the use of the Companion Website and URLs that identify how to utilize technology and the Internet in science teaching. Chapter 10 groups together strategies for the use of advanced technology. Instructional models for continuing professional development are illustrated in Video Case Studies. Nine elementary and middle school teachers reflect on their growth as science teachers as they teach their own classes, work. with science mentors, and explore how they could teach science better. A different Video Case Study is featured in each chapter of the text. The Video Case StudiesBecause the Video Case Studies in this text are a unique feature, it is important to explain not only the predictable format for the use of these videos but also how to get the most out of using those case studies to advance your own learning.The Value of Video Case Studies. In their practical guide Designing Professional Development for Teachers of Science and Mathematics, Susan Loucks-Horsley, Peter Hewson, Nancy Love, and Katherine Stiles (1998) identified the case study method as one of the most important strategies for professional development. The process of observing and reflecting on teachers' actions, and on students' learning and thinking, can lead to changes in the knowledge, beliefs, attitudes, and ultimately the practice of pre-service and in-service teachers. You and your colleagues can use classroom discussions about the Video Case Studies to:extend and apply knowledge presented in the chapters, formulate questions and ideas, learn from one another, become aware of alternative perspectives and strategies, reflect on real problems faced by practicing teachers, and increase your science knowledge, as more than 30 science topics are taught in the case studies.Videos by Annenberg. The Video Case Studies that accompany this text are free to professors who use this text and are part of the professional library developed by Annenberg. Chosen for their value in illustrating professional development, ten video cases depict nine different teachers in three videos from Annenberg's Case Studies in Science Education series. Each video case has three modules: An Introduction to the Case, Trying New Ideas, and Reflecting and Building on Change. The three parts of each video case enable you to look in on a teacher and his or her students at intervals throughout the school year. From one segment to the next, in each case you will see how the teacher undergoes professional changes in approaching science teaching. The changes reflect the real-life experiences of teachers who see a need to improve the way they teach, meet with a teaching mentor to gather ideas, and implement ways to improve their science teaching practice. As a result of this work, you will witness not only a teacher's growing confidence and capability in science teaching but also a growing involvement of students in their own science learning.Chapter Video Guides. A video guide is found in each chapter. Within each two-page or four-page guide are Questions for Reflection to help you and others increase your involvement with the Video Case Study and look for changes in the knowledge, beliefs, and instructional plans and approaches of the featured teacher. Included in most of the chapter video guides are examples of strategies you may want to implement in your own science teaching practice.For optimum benefit while watching the video segments, participants must have a "shared commitment to improving their teaching practice, a willingness to share and critically discuss aspects of practice and curiosity about important assumptions that underlie teaching and learning" (Loucks-Horsley et al., 1998, pp. 108-109). A knowledgeable and experienced facilitator can enhance the case discussions. The role of the facilitator is to help participantsunderstand the situation and issues in the case, focus on the thinking of students in the video classrooms, examine the approach taken by the teacher, reflect on the theoretical foundation for the teacher's actions, and consider alternative actions and their consequences (Loucks-Horsley et al., 1998).Although these Video Case Studies are not intended to replace actual classroom visits, they can provide a more focused picture of specific aspects of teaching and learning than might be obtained from real-time observations of classes. The Companion WebsiteA Companion Website designed for student and professor use accompanies this text. The Syllabus Manager allows professors the opportunity to place the class syllabus online. This enables students to also see a course calendar, chapter assignments, and course changes as they are posted. In addition, content information is organized as chapter-by-chapter features and provides you with study guide questions and self-assessment tests so you can check your own understanding of teaching science in an ongoing way. Links on the website navigation bar can transport you tofocus questions you can use as a study guide, online quizzes that are self-pacing and self-evaluating, with scores e-mailed to professors if desired, Web destinations and links to wonderful science resources on the Internet, and a Message Board where you can engage in meaningful discourse about science teaching and learning issues with others taking the course.Unique to this Companion Website are virtual classroom experiences linked to Chapters 2, 3, 4, and 8, set up as video essays. They provide an opportunity for you to see how well you understand the components of good science teaching. Videostreaming on the video essays illustrates the various teaching strategies of classroom teachers teaching properties of air in grade 1, balance beams in grade 4, and pendulums in grade 8. As you begin to understand the components of good science instruction you can visit the video essays on the Companion Website and test yourself on which strategies exemplify effective science teaching. You should also see opportunities for improving each science lesson. As you become more familiar with the rudiments of effective science instruction, you may choose to revisit these virtual sites and reassess your understanding of science teaching and learning.Margin notes integrated in the text and designated with a logo that will prompt you to visit the Companion Website to utilize its features in your course study. AcknowledgmentsTo be meaningful, educational visions have to be practically implemented in teacher education and staff development programs, and most important, in our nation's classrooms. Our goal in writing and revising this textbook has been to present the new vision of science education and provide you with specific help, guidelines, and examples as you prepare to teach science in a new millennium.The reviewers for the seventh edition of this text, as well as those who read and commented on the chapters in the eighth edition, have been very perceptive and insightful and have offered many comments and suggestions that, hopefully, have led to significant improvements. We acknowledge and express our gratitude to the following reviewers: Carol Brewer, The University of Montana; Rosemarie Kolstad, East Texas State University; Mark R. Malone, The University of Colorado; Richard H. Moyer, The University of Michigan-Dearborn; Michael Odell, The University of Idaho; William A. Rieck, The University of Southwestern Louisiana; Joseph D. Sharpe, Tennessee Technological University; Leone E. Snyder, Northwestern College; M. Dale Streigle, Iowa State University; and Dana L. Zeidler, The University of South Florida-Tampa.We thank editor Linda Ashe Montgomery at Merrill Education who has provided substantive, as well as editorial, assistance throughout the writing and revision efforts. She has a great sensitivity to education issues, not only in science but in other specialized fields as well. We wish to acknowledge her contributions to this text and convey our appreciation to her.We also wish to thank Kathy Deselle, copyeditor; Kate Nichols, designer; Mary Harlan, production editor; and Betsy Keefer, project coordinator.--This text refers to an out of print or unavailable edition of this title.

Books - New and Used

The following guidelines apply to books:

  • New: A brand-new copy with cover and original protective wrapping intact. Books with markings of any kind on the cover or pages, books marked as "Bargain" or "Remainder," or with any other labels attached, may not be listed as New condition.
  • Used - Good: All pages and cover are intact (including the dust cover, if applicable). Spine may show signs of wear. Pages may include limited notes and highlighting. May include "From the library of" labels. Shrink wrap, dust covers, or boxed set case may be missing. Item may be missing bundled media.
  • Used - Acceptable: All pages and the cover are intact, but shrink wrap, dust covers, or boxed set case may be missing. Pages may include limited notes, highlighting, or minor water damage but the text is readable. Item may but the dust cover may be missing. Pages may include limited notes and highlighting, but the text cannot be obscured or unreadable.

Note: Some electronic material access codes are valid only for one user. For this reason, used books, including books listed in the Used – Like New condition, may not come with functional electronic material access codes.

Shipping Fees

  • Stevens Books offers FREE SHIPPING everywhere in the United States for ALL non-book orders, and $3.99 for each book.
  • Packages are shipped from Monday to Friday.
  • No additional fees and charges.

Delivery Times

The usual time for processing an order is 24 hours (1 business day), but may vary depending on the availability of products ordered. This period excludes delivery times, which depend on your geographic location.

Estimated delivery times:

  • Standard Shipping: 5-8 business days
  • Expedited Shipping: 3-5 business days

Shipping method varies depending on what is being shipped.  

Tracking
All orders are shipped with a tracking number. Once your order has left our warehouse, a confirmation e-mail with a tracking number will be sent to you. You will be able to track your package at all times. 

Damaged Parcel
If your package has been delivered in a PO Box, please note that we are not responsible for any damage that may result (consequences of extreme temperatures, theft, etc.). 

If you have any questions regarding shipping or want to know about the status of an order, please contact us or email to support@stevensbooks.com.

You may return most items within 30 days of delivery for a full refund.

To be eligible for a return, your item must be unused and in the same condition that you received it. It must also be in the original packaging.

Several types of goods are exempt from being returned. Perishable goods such as food, flowers, newspapers or magazines cannot be returned. We also do not accept products that are intimate or sanitary goods, hazardous materials, or flammable liquids or gases.

Additional non-returnable items:

  • Gift cards
  • Downloadable software products
  • Some health and personal care items

To complete your return, we require a tracking number, which shows the items which you already returned to us.
There are certain situations where only partial refunds are granted (if applicable)

  • Book with obvious signs of use
  • CD, DVD, VHS tape, software, video game, cassette tape, or vinyl record that has been opened
  • Any item not in its original condition, is damaged or missing parts for reasons not due to our error
  • Any item that is returned more than 30 days after delivery

Items returned to us as a result of our error will receive a full refund,some returns may be subject to a restocking fee of 7% of the total item price, please contact a customer care team member to see if your return is subject. Returns that arrived on time and were as described are subject to a restocking fee.

Items returned to us that were not the result of our error, including items returned to us due to an invalid or incomplete address, will be refunded the original item price less our standard restocking fees.

If the item is returned to us for any of the following reasons, a 15% restocking fee will be applied to your refund total and you will be asked to pay for return shipping:

  • Item(s) no longer needed or wanted.
  • Item(s) returned to us due to an invalid or incomplete address.
  • Item(s) returned to us that were not a result of our error.

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, please Contact Us with your order number and details about the product you would like to return. We will respond quickly with instructions for how to return items from your order.


Shipping Cost


We'll pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.). In other cases, you will be responsible for paying for your own shipping costs for returning your item. Shipping costs are non-refundable. If you receive a refund, the cost of return shipping will be deducted from your refund.

Depending on where you live, the time it may take for your exchanged product to reach you, may vary.

If you are shipping an item over $75, you should consider using a trackable shipping service or purchasing shipping insurance. We don’t guarantee that we will receive your returned item.

$13.68
Out of Stock
Overview
PrefaceTHE EIGHTH EDITION of Method for Teaching Science as Inquiry introduces prospective and experienced teachers to the science content, teaching strategies, and inquiry activities necessary to teach science in contemporary ways. In addition, the infusion of the National Science Education Standard in this edition will provide all readers a useful framework for making instructional decisions.Although several approaches to teaching and learning science are described in this text, the main focus is on inquiry. Inquiry is both a way to teach and a way for students to investigate the world. Doing inquiry means asking simple but thoughtful questions about the world and engaging students to answer them. Inquiry incorporates the use of hands-on and process-oriented activities for the benefit of knowledge construction. Inquiry encourages students to connect their prior knowledge to observations and to use their observations as evidence to increase personal scientific knowledge. In this instructional environment, teachers act as facilitators of learning rather than "bankers" who have stored knowledge that they transfer into students' heads. New to the Eighth EditionThose of you familiar with the text will notice that it has a new title. Each preceding edition was entitled Teaching Modern Science and walked readers through the process of guiding students toward the discovery of science knowledge. Guided discovery is a more programmed way of teaching science using teacher-directed questioning. However, recent advances in cognitive learning theory have lead to national reform in education. From cognitive learning research, educators realize the need for students to be actively engaged in their own construction of knowledge, but teachers must be prepared to "invent" concepts and principles for students to use. Inquiry learning and inquiry teaching go together. Thus, the revision of this text provides the knowledge and skills necessary to teach from an inquiry-oriented perspective.Methods for Teaching Science as Inquiry mirrors national reform in another way as well. Educational reform has led to the development of common instructional goals for every content area of education throughout the nation. Prodigious efforts of the American Association for the Advancement of Science (AAAS), the National Research Council, and other groups in the 1990s have provided a coherent vision and research-based framework for a new era of science education. As a result, the National Science Education Standards (NSES) were created to coordinate the goals and objectives for science instruction. The National Science Education Standards provide directives not only for the setting up of district-wide science programs but also for the science concepts that are to be covered at each grade level. These standards are not rigid but rather provide you, and the school system in which you teach, concrete guidelines for exposing students to science experiences throughout their schooling. Different from the hit-or-miss approach of the past, the science goals and objectives for elementary and middle schools are clear. Throughout this text, you will have an opportunity to become familiar with the National Science Education Standards as the text is woven around them. Look for citations to the National Research Council and the symbol NSES passages within the text and in margin notes to find your responsibilities for using them in all aspects of science teaching and learning.Other significant changes within this edition include:A new chapter, Processes of Science and Scientific Inquiry, describes how to use the processes of science within the context of scientific inquiry. More science activities and science lessons integrated into chapters act as exemplary models describing how to plan for instruction within the context of inquiry. Practical suggestions for building learning communities are included throughout the text and describe cooperative grouping strategies and ideas for encouraging the exchange of ideas among students during inquiry experiences. Connections between science, math, social studies, and language arts are explained extensively with new and exciting concrete ideas and strategies in Chapter 8. Threaded throughout the text are references to the use of the Companion Website and URLs that identify how to utilize technology and the Internet in science teaching. Chapter 10 groups together strategies for the use of advanced technology. Instructional models for continuing professional development are illustrated in Video Case Studies. Nine elementary and middle school teachers reflect on their growth as science teachers as they teach their own classes, work. with science mentors, and explore how they could teach science better. A different Video Case Study is featured in each chapter of the text. The Video Case StudiesBecause the Video Case Studies in this text are a unique feature, it is important to explain not only the predictable format for the use of these videos but also how to get the most out of using those case studies to advance your own learning.The Value of Video Case Studies. In their practical guide Designing Professional Development for Teachers of Science and Mathematics, Susan Loucks-Horsley, Peter Hewson, Nancy Love, and Katherine Stiles (1998) identified the case study method as one of the most important strategies for professional development. The process of observing and reflecting on teachers' actions, and on students' learning and thinking, can lead to changes in the knowledge, beliefs, attitudes, and ultimately the practice of pre-service and in-service teachers. You and your colleagues can use classroom discussions about the Video Case Studies to:extend and apply knowledge presented in the chapters, formulate questions and ideas, learn from one another, become aware of alternative perspectives and strategies, reflect on real problems faced by practicing teachers, and increase your science knowledge, as more than 30 science topics are taught in the case studies.Videos by Annenberg. The Video Case Studies that accompany this text are free to professors who use this text and are part of the professional library developed by Annenberg. Chosen for their value in illustrating professional development, ten video cases depict nine different teachers in three videos from Annenberg's Case Studies in Science Education series. Each video case has three modules: An Introduction to the Case, Trying New Ideas, and Reflecting and Building on Change. The three parts of each video case enable you to look in on a teacher and his or her students at intervals throughout the school year. From one segment to the next, in each case you will see how the teacher undergoes professional changes in approaching science teaching. The changes reflect the real-life experiences of teachers who see a need to improve the way they teach, meet with a teaching mentor to gather ideas, and implement ways to improve their science teaching practice. As a result of this work, you will witness not only a teacher's growing confidence and capability in science teaching but also a growing involvement of students in their own science learning.Chapter Video Guides. A video guide is found in each chapter. Within each two-page or four-page guide are Questions for Reflection to help you and others increase your involvement with the Video Case Study and look for changes in the knowledge, beliefs, and instructional plans and approaches of the featured teacher. Included in most of the chapter video guides are examples of strategies you may want to implement in your own science teaching practice.For optimum benefit while watching the video segments, participants must have a "shared commitment to improving their teaching practice, a willingness to share and critically discuss aspects of practice and curiosity about important assumptions that underlie teaching and learning" (Loucks-Horsley et al., 1998, pp. 108-109). A knowledgeable and experienced facilitator can enhance the case discussions. The role of the facilitator is to help participantsunderstand the situation and issues in the case, focus on the thinking of students in the video classrooms, examine the approach taken by the teacher, reflect on the theoretical foundation for the teacher's actions, and consider alternative actions and their consequences (Loucks-Horsley et al., 1998).Although these Video Case Studies are not intended to replace actual classroom visits, they can provide a more focused picture of specific aspects of teaching and learning than might be obtained from real-time observations of classes. The Companion WebsiteA Companion Website designed for student and professor use accompanies this text. The Syllabus Manager allows professors the opportunity to place the class syllabus online. This enables students to also see a course calendar, chapter assignments, and course changes as they are posted. In addition, content information is organized as chapter-by-chapter features and provides you with study guide questions and self-assessment tests so you can check your own understanding of teaching science in an ongoing way. Links on the website navigation bar can transport you tofocus questions you can use as a study guide, online quizzes that are self-pacing and self-evaluating, with scores e-mailed to professors if desired, Web destinations and links to wonderful science resources on the Internet, and a Message Board where you can engage in meaningful discourse about science teaching and learning issues with others taking the course.Unique to this Companion Website are virtual classroom experiences linked to Chapters 2, 3, 4, and 8, set up as video essays. They provide an opportunity for you to see how well you understand the components of good science teaching. Videostreaming on the video essays illustrates the various teaching strategies of classroom teachers teaching properties of air in grade 1, balance beams in grade 4, and pendulums in grade 8. As you begin to understand the components of good science instruction you can visit the video essays on the Companion Website and test yourself on which strategies exemplify effective science teaching. You should also see opportunities for improving each science lesson. As you become more familiar with the rudiments of effective science instruction, you may choose to revisit these virtual sites and reassess your understanding of science teaching and learning.Margin notes integrated in the text and designated with a logo that will prompt you to visit the Companion Website to utilize its features in your course study. AcknowledgmentsTo be meaningful, educational visions have to be practically implemented in teacher education and staff development programs, and most important, in our nation's classrooms. Our goal in writing and revising this textbook has been to present the new vision of science education and provide you with specific help, guidelines, and examples as you prepare to teach science in a new millennium.The reviewers for the seventh edition of this text, as well as those who read and commented on the chapters in the eighth edition, have been very perceptive and insightful and have offered many comments and suggestions that, hopefully, have led to significant improvements. We acknowledge and express our gratitude to the following reviewers: Carol Brewer, The University of Montana; Rosemarie Kolstad, East Texas State University; Mark R. Malone, The University of Colorado; Richard H. Moyer, The University of Michigan-Dearborn; Michael Odell, The University of Idaho; William A. Rieck, The University of Southwestern Louisiana; Joseph D. Sharpe, Tennessee Technological University; Leone E. Snyder, Northwestern College; M. Dale Streigle, Iowa State University; and Dana L. Zeidler, The University of South Florida-Tampa.We thank editor Linda Ashe Montgomery at Merrill Education who has provided substantive, as well as editorial, assistance throughout the writing and revision efforts. She has a great sensitivity to education issues, not only in science but in other specialized fields as well. We wish to acknowledge her contributions to this text and convey our appreciation to her.We also wish to thank Kathy Deselle, copyeditor; Kate Nichols, designer; Mary Harlan, production editor; and Betsy Keefer, project coordinator.--This text refers to an out of print or unavailable edition of this title.
ISBN: 0131180053
ISBN13: 9780131180055
Author: Arthur A. Carin, Joel E. Bass, Terry L. Contant
Publisher: Pearson College Div
Format: Paperback
PublicationDate: 2004-02-01
Language: English
Edition: 9
PageCount: 400
Dimensions: 8.0 x 0.75 x 10.0 inches
Weight: 26.08 ounces
PrefaceTHE EIGHTH EDITION of Method for Teaching Science as Inquiry introduces prospective and experienced teachers to the science content, teaching strategies, and inquiry activities necessary to teach science in contemporary ways. In addition, the infusion of the National Science Education Standard in this edition will provide all readers a useful framework for making instructional decisions.Although several approaches to teaching and learning science are described in this text, the main focus is on inquiry. Inquiry is both a way to teach and a way for students to investigate the world. Doing inquiry means asking simple but thoughtful questions about the world and engaging students to answer them. Inquiry incorporates the use of hands-on and process-oriented activities for the benefit of knowledge construction. Inquiry encourages students to connect their prior knowledge to observations and to use their observations as evidence to increase personal scientific knowledge. In this instructional environment, teachers act as facilitators of learning rather than "bankers" who have stored knowledge that they transfer into students' heads. New to the Eighth EditionThose of you familiar with the text will notice that it has a new title. Each preceding edition was entitled Teaching Modern Science and walked readers through the process of guiding students toward the discovery of science knowledge. Guided discovery is a more programmed way of teaching science using teacher-directed questioning. However, recent advances in cognitive learning theory have lead to national reform in education. From cognitive learning research, educators realize the need for students to be actively engaged in their own construction of knowledge, but teachers must be prepared to "invent" concepts and principles for students to use. Inquiry learning and inquiry teaching go together. Thus, the revision of this text provides the knowledge and skills necessary to teach from an inquiry-oriented perspective.Methods for Teaching Science as Inquiry mirrors national reform in another way as well. Educational reform has led to the development of common instructional goals for every content area of education throughout the nation. Prodigious efforts of the American Association for the Advancement of Science (AAAS), the National Research Council, and other groups in the 1990s have provided a coherent vision and research-based framework for a new era of science education. As a result, the National Science Education Standards (NSES) were created to coordinate the goals and objectives for science instruction. The National Science Education Standards provide directives not only for the setting up of district-wide science programs but also for the science concepts that are to be covered at each grade level. These standards are not rigid but rather provide you, and the school system in which you teach, concrete guidelines for exposing students to science experiences throughout their schooling. Different from the hit-or-miss approach of the past, the science goals and objectives for elementary and middle schools are clear. Throughout this text, you will have an opportunity to become familiar with the National Science Education Standards as the text is woven around them. Look for citations to the National Research Council and the symbol NSES passages within the text and in margin notes to find your responsibilities for using them in all aspects of science teaching and learning.Other significant changes within this edition include:A new chapter, Processes of Science and Scientific Inquiry, describes how to use the processes of science within the context of scientific inquiry. More science activities and science lessons integrated into chapters act as exemplary models describing how to plan for instruction within the context of inquiry. Practical suggestions for building learning communities are included throughout the text and describe cooperative grouping strategies and ideas for encouraging the exchange of ideas among students during inquiry experiences. Connections between science, math, social studies, and language arts are explained extensively with new and exciting concrete ideas and strategies in Chapter 8. Threaded throughout the text are references to the use of the Companion Website and URLs that identify how to utilize technology and the Internet in science teaching. Chapter 10 groups together strategies for the use of advanced technology. Instructional models for continuing professional development are illustrated in Video Case Studies. Nine elementary and middle school teachers reflect on their growth as science teachers as they teach their own classes, work. with science mentors, and explore how they could teach science better. A different Video Case Study is featured in each chapter of the text. The Video Case StudiesBecause the Video Case Studies in this text are a unique feature, it is important to explain not only the predictable format for the use of these videos but also how to get the most out of using those case studies to advance your own learning.The Value of Video Case Studies. In their practical guide Designing Professional Development for Teachers of Science and Mathematics, Susan Loucks-Horsley, Peter Hewson, Nancy Love, and Katherine Stiles (1998) identified the case study method as one of the most important strategies for professional development. The process of observing and reflecting on teachers' actions, and on students' learning and thinking, can lead to changes in the knowledge, beliefs, attitudes, and ultimately the practice of pre-service and in-service teachers. You and your colleagues can use classroom discussions about the Video Case Studies to:extend and apply knowledge presented in the chapters, formulate questions and ideas, learn from one another, become aware of alternative perspectives and strategies, reflect on real problems faced by practicing teachers, and increase your science knowledge, as more than 30 science topics are taught in the case studies.Videos by Annenberg. The Video Case Studies that accompany this text are free to professors who use this text and are part of the professional library developed by Annenberg. Chosen for their value in illustrating professional development, ten video cases depict nine different teachers in three videos from Annenberg's Case Studies in Science Education series. Each video case has three modules: An Introduction to the Case, Trying New Ideas, and Reflecting and Building on Change. The three parts of each video case enable you to look in on a teacher and his or her students at intervals throughout the school year. From one segment to the next, in each case you will see how the teacher undergoes professional changes in approaching science teaching. The changes reflect the real-life experiences of teachers who see a need to improve the way they teach, meet with a teaching mentor to gather ideas, and implement ways to improve their science teaching practice. As a result of this work, you will witness not only a teacher's growing confidence and capability in science teaching but also a growing involvement of students in their own science learning.Chapter Video Guides. A video guide is found in each chapter. Within each two-page or four-page guide are Questions for Reflection to help you and others increase your involvement with the Video Case Study and look for changes in the knowledge, beliefs, and instructional plans and approaches of the featured teacher. Included in most of the chapter video guides are examples of strategies you may want to implement in your own science teaching practice.For optimum benefit while watching the video segments, participants must have a "shared commitment to improving their teaching practice, a willingness to share and critically discuss aspects of practice and curiosity about important assumptions that underlie teaching and learning" (Loucks-Horsley et al., 1998, pp. 108-109). A knowledgeable and experienced facilitator can enhance the case discussions. The role of the facilitator is to help participantsunderstand the situation and issues in the case, focus on the thinking of students in the video classrooms, examine the approach taken by the teacher, reflect on the theoretical foundation for the teacher's actions, and consider alternative actions and their consequences (Loucks-Horsley et al., 1998).Although these Video Case Studies are not intended to replace actual classroom visits, they can provide a more focused picture of specific aspects of teaching and learning than might be obtained from real-time observations of classes. The Companion WebsiteA Companion Website designed for student and professor use accompanies this text. The Syllabus Manager allows professors the opportunity to place the class syllabus online. This enables students to also see a course calendar, chapter assignments, and course changes as they are posted. In addition, content information is organized as chapter-by-chapter features and provides you with study guide questions and self-assessment tests so you can check your own understanding of teaching science in an ongoing way. Links on the website navigation bar can transport you tofocus questions you can use as a study guide, online quizzes that are self-pacing and self-evaluating, with scores e-mailed to professors if desired, Web destinations and links to wonderful science resources on the Internet, and a Message Board where you can engage in meaningful discourse about science teaching and learning issues with others taking the course.Unique to this Companion Website are virtual classroom experiences linked to Chapters 2, 3, 4, and 8, set up as video essays. They provide an opportunity for you to see how well you understand the components of good science teaching. Videostreaming on the video essays illustrates the various teaching strategies of classroom teachers teaching properties of air in grade 1, balance beams in grade 4, and pendulums in grade 8. As you begin to understand the components of good science instruction you can visit the video essays on the Companion Website and test yourself on which strategies exemplify effective science teaching. You should also see opportunities for improving each science lesson. As you become more familiar with the rudiments of effective science instruction, you may choose to revisit these virtual sites and reassess your understanding of science teaching and learning.Margin notes integrated in the text and designated with a logo that will prompt you to visit the Companion Website to utilize its features in your course study. AcknowledgmentsTo be meaningful, educational visions have to be practically implemented in teacher education and staff development programs, and most important, in our nation's classrooms. Our goal in writing and revising this textbook has been to present the new vision of science education and provide you with specific help, guidelines, and examples as you prepare to teach science in a new millennium.The reviewers for the seventh edition of this text, as well as those who read and commented on the chapters in the eighth edition, have been very perceptive and insightful and have offered many comments and suggestions that, hopefully, have led to significant improvements. We acknowledge and express our gratitude to the following reviewers: Carol Brewer, The University of Montana; Rosemarie Kolstad, East Texas State University; Mark R. Malone, The University of Colorado; Richard H. Moyer, The University of Michigan-Dearborn; Michael Odell, The University of Idaho; William A. Rieck, The University of Southwestern Louisiana; Joseph D. Sharpe, Tennessee Technological University; Leone E. Snyder, Northwestern College; M. Dale Streigle, Iowa State University; and Dana L. Zeidler, The University of South Florida-Tampa.We thank editor Linda Ashe Montgomery at Merrill Education who has provided substantive, as well as editorial, assistance throughout the writing and revision efforts. She has a great sensitivity to education issues, not only in science but in other specialized fields as well. We wish to acknowledge her contributions to this text and convey our appreciation to her.We also wish to thank Kathy Deselle, copyeditor; Kate Nichols, designer; Mary Harlan, production editor; and Betsy Keefer, project coordinator.--This text refers to an out of print or unavailable edition of this title.

Books - New and Used

The following guidelines apply to books:

  • New: A brand-new copy with cover and original protective wrapping intact. Books with markings of any kind on the cover or pages, books marked as "Bargain" or "Remainder," or with any other labels attached, may not be listed as New condition.
  • Used - Good: All pages and cover are intact (including the dust cover, if applicable). Spine may show signs of wear. Pages may include limited notes and highlighting. May include "From the library of" labels. Shrink wrap, dust covers, or boxed set case may be missing. Item may be missing bundled media.
  • Used - Acceptable: All pages and the cover are intact, but shrink wrap, dust covers, or boxed set case may be missing. Pages may include limited notes, highlighting, or minor water damage but the text is readable. Item may but the dust cover may be missing. Pages may include limited notes and highlighting, but the text cannot be obscured or unreadable.

Note: Some electronic material access codes are valid only for one user. For this reason, used books, including books listed in the Used – Like New condition, may not come with functional electronic material access codes.

Shipping Fees

  • Stevens Books offers FREE SHIPPING everywhere in the United States for ALL non-book orders, and $3.99 for each book.
  • Packages are shipped from Monday to Friday.
  • No additional fees and charges.

Delivery Times

The usual time for processing an order is 24 hours (1 business day), but may vary depending on the availability of products ordered. This period excludes delivery times, which depend on your geographic location.

Estimated delivery times:

  • Standard Shipping: 5-8 business days
  • Expedited Shipping: 3-5 business days

Shipping method varies depending on what is being shipped.  

Tracking
All orders are shipped with a tracking number. Once your order has left our warehouse, a confirmation e-mail with a tracking number will be sent to you. You will be able to track your package at all times. 

Damaged Parcel
If your package has been delivered in a PO Box, please note that we are not responsible for any damage that may result (consequences of extreme temperatures, theft, etc.). 

If you have any questions regarding shipping or want to know about the status of an order, please contact us or email to support@stevensbooks.com.

You may return most items within 30 days of delivery for a full refund.

To be eligible for a return, your item must be unused and in the same condition that you received it. It must also be in the original packaging.

Several types of goods are exempt from being returned. Perishable goods such as food, flowers, newspapers or magazines cannot be returned. We also do not accept products that are intimate or sanitary goods, hazardous materials, or flammable liquids or gases.

Additional non-returnable items:

  • Gift cards
  • Downloadable software products
  • Some health and personal care items

To complete your return, we require a tracking number, which shows the items which you already returned to us.
There are certain situations where only partial refunds are granted (if applicable)

  • Book with obvious signs of use
  • CD, DVD, VHS tape, software, video game, cassette tape, or vinyl record that has been opened
  • Any item not in its original condition, is damaged or missing parts for reasons not due to our error
  • Any item that is returned more than 30 days after delivery

Items returned to us as a result of our error will receive a full refund,some returns may be subject to a restocking fee of 7% of the total item price, please contact a customer care team member to see if your return is subject. Returns that arrived on time and were as described are subject to a restocking fee.

Items returned to us that were not the result of our error, including items returned to us due to an invalid or incomplete address, will be refunded the original item price less our standard restocking fees.

If the item is returned to us for any of the following reasons, a 15% restocking fee will be applied to your refund total and you will be asked to pay for return shipping:

  • Item(s) no longer needed or wanted.
  • Item(s) returned to us due to an invalid or incomplete address.
  • Item(s) returned to us that were not a result of our error.

You should expect to receive your refund within four weeks of giving your package to the return shipper, however, in many cases you will receive a refund more quickly. This time period includes the transit time for us to receive your return from the shipper (5 to 10 business days), the time it takes us to process your return once we receive it (3 to 5 business days), and the time it takes your bank to process our refund request (5 to 10 business days).

If you need to return an item, please Contact Us with your order number and details about the product you would like to return. We will respond quickly with instructions for how to return items from your order.


Shipping Cost


We'll pay the return shipping costs if the return is a result of our error (you received an incorrect or defective item, etc.). In other cases, you will be responsible for paying for your own shipping costs for returning your item. Shipping costs are non-refundable. If you receive a refund, the cost of return shipping will be deducted from your refund.

Depending on where you live, the time it may take for your exchanged product to reach you, may vary.

If you are shipping an item over $75, you should consider using a trackable shipping service or purchasing shipping insurance. We don’t guarantee that we will receive your returned item.

X

Oops!

Sorry, it looks like some products are not available in selected quantity.

OK

Sign up to the Stevens Books Newsletter

For the latest books, recommendations, author interviews and more

By signing up, I confirm that I'm over 16. To find out what personal data we collect and how we use it, please visit. our Privacy Policy.